Monday, May 14, 2012
Sunday, May 13, 2012
Ural Motorcycles
Friday, February 17, 2012
Rotary engine
-Cat-and-mouse engines
-Eccentric-rotor engines
-Multirotor engines
-Revolving-block engines
-Engines of other types
- Bibliography
Internal combustion engine that duplicates in some fashion the intermittent cycle of the piston engine, consisting of the intake-compression-power-exhaust cycle, wherein the form of the power output is directly rotational.
Four general categories of rotary engines can be considered: (1) cat-and-mouse (or scissor) engines, which are analogs of the reciprocating piston engine, except that the pistons travel in a circular path; (2) eccentric-rotor engines, wherein motion is imparted to a shaft by a principal rotating part, or rotor, that is eccentric to the shaft; (3) multiple-rotor engines, which are based on simple rotary motion of two or more rotors; and (4) revolving-block engines, which combine reciprocating piston and rotary motion. Some of the more interesting engines of each type are discussed in this article.
Cat-and-mouse engines
Typical of this class is the engine developed by T. Tschudi, the initial design of which goes back to 1927. The pistons, which are sections of a torus, travel around a toroidal cylinder. The operation of the engine can be visualized with the aid of Fig. 1, where piston A operates with piston C, and B with D. In chamber 1 a fresh fuel-air mixture is initially injected while pistons C and D are closest together. During the intake stroke the rotor attached to pistons B and D rotates, thereby increasing the volume of chamber 1. During this time the A-C rotor is stationary. When piston D reaches its topmost position, the B-D rotor becomes stationary, and A and C rotate so that the volume of chamber 1 decreases and the fuel-air mixture is compressed.
Intake-compression-power-exhaust cycle of the Tschudi engine.
Fig. 1 Intake-compression-power-exhaust cycle of the Tschudi engine.
Add to 'My Saved Images'
When the volume of chamber 1 is again minimal, both rotors move to locate chamber 1 under the spark plug, which is fired. The power stroke finds piston D moving away from piston C, with the A-C rotor again locked during most of the power stroke. Finally, when piston D has reached bottom, the B-D rotor locks, the exhaust port has been exposed, and the movement of piston C forces out the combustion product gas. Note that four chambers exist at any time, so that at each instant all the processes making up the four-strike cycle (intake-compression-power-exhaust) are occurring.
The motion of the rotors, and hence the pistons, is controlled by two cams which bear against rollers attached to the rotors. The cams and rollers associated with one of the rotors disengage when it is desired to stop the motion of that rotor. The shock loads associated with starting and stopping the rotors at high speeds may be a problem with this engine, and lubrication and sealing problems are characteristic of virtually all the engines discussed herein. However, the problem of fabricating toroidal pistons does not appear to be as formidable as was once believed.
An engine similar to the Tschudi in operation is that developed by E. Kauertz. In this case, however, the pistons are vanes which are sections of a right circular cylinder. Another difference is that while one set of pistons is attached to one rotor so that these two pistons rotate with a constant angular velocity, the motion of the second set of pistons is controlled by a complex gear-and-crank arrangement so that the angular velocity of this second set varies. In this manner, the chambers between the pistons can be made to vary in volume in a prescribed manner. Hence, the standard piston-engine cycle can be duplicated. Kauertz tested a prototype which was found to run smoothly and to deliver 213 hp (160 kW) at 4000 rpm. Here again, however, the varying angular velocity of the second set of pistons must produce inertia effects that will be absorbed by the gear-and-crank system. At high speeds over extended periods, problems with this system are likely to be encountered.
An advanced version of the cat-and-mouse concept called the SODRIC engine has been developed by K. Chahrouri. Unlike the Tschudi engine, in which the four processes of intake-compression-power-exhaust are distributed over 360° of arc, the SODRIC engine performs these same four processes in 60° of arc. Hence, six power strokes per revolution are achieved, resulting in very substantial improvements in engine performance parameters. For example, Chahrouri has estimated that 225 hp (168 kW) can be achieved at only 1000 rpm using an engine having a toroid radius of 8 in. (20 cm) and 1-in.-radius (25-mm) pistons. Chahrouri has also improved upon the method by which alternate acceleration-deceleration of the pistons is achieved, and power is transmitted to the output shaft by using noncircular gears.
The “cat-and-mouse” and “scissors” characterizations of these engines should be clear once the picture of pistons alternately running away from, and catching up to, each other is firmly in mind. Other engines of this type, including the Maier, Rayment, and Virmel designs, differ principally in the system used to achieve the cat-and-mouse effect.
It should be noted that since the length of the power stroke is readily controlled in these engines, good combustion efficiencies (close to complete combustion) should be attainable.
Eccentric-rotor engines
The rotary engine which has received by far the greatest development to date is the Wankel engine, an eccentric-rotor type. The basic engine components are pictured in Fig. 2. Only two primary moving parts are present: the rotor and the eccentric shaft. The rotor moves in one direction around the trochoidal chamber, which contains peripheral intake and exhaust ports.
Operation and basic components of the Wankel engine.
Fig. 2 Operation and basic components of the Wankel engine.
Add to 'My Saved Images'
The operation of this engine can be visualized with the aid of Fig. 2. The rotor divides the inner volume into three chambers, with each chamber the analog of the cylinder in the standard piston engine. Initially, chamber AB is terminating the intake phase and commencing its compression phase, while chamber BC is terminating its compression phase and chamber CA is commencing its exhaust phase. As the rotor moves clockwise, the volume of chamber AB approaches a minimum. When the volume of chamber AB is minimal, the spark plug fires, initiating the combustion phase in that chamber. As combustion continues, the point is reached where the exhaust port is exposed, and the products of combustion are expelled from chamber AB.
To increase the chamber volumes, each segment of the rotor rim is recessed (Fig. 2). During the combustion-expansion phase, unburned gas tends to flow at high velocity away from the combustion zone toward the opposite corner. As a result, this engine has a tendency to leave a portion of the charge unburned, similar to the problem encountered in ordinary piston engines. In addition to reducing the engine performance, this unburned gas is a source of air pollution. Efforts have been directed toward increasing the turbulence in each chamber, thereby improving the mixing between the burned and unburned gases, leading to better combustion efficiency.
However, Wankel engines have demonstrated impressive advantages when contrasted with standard engines. Some of these are listed below.
The Wankel has superior power-to-weight ratio; that is, it generally produces more or at least comparable horsepower per pound of engine weight when compared with conventional piston engines.
To increase power output, additional rotor-trochoidal chamber assemblies can readily be added, which occupy relatively little space and add little weight. In piston engines, cylinder volumes must be increased, leading to substantial increases in weight and installation space.
The rotor and eccentric shaft assembly can be completely balanced; since they usually rotate at constant velocity in one direction, vibration is almost completely eliminated and noise levels are markedly reduced.
As with the cat-and-mouse engines, the intake and exhaust ports always remain open, that is, gas flow into and from the engine is never stopped, so that surging phenomena and problems associated with valves which open and close are eliminated.
Tests indicate that Wankel engines can run on a wide variety of fuels, including ordinary gasoline and cheaper fuels as well.
After considerable development, reasonably effective sealing between the chambers has been achieved, and springs maintain a light pressure against the trochoidal surface.
The Wankel has so few parts, relative to a piston engine, that in the long run it will probably be cheaper to manufacture.
The initial application of the Wankel engine as an automotive power plant occurred in the NSU Spider. In the early 1970s, however, the Japanese automobile manufacturer Mazda began to use Wankel engines exclusively. However, relatively high pollutant emissions, coupled with low gasoline mileage for automobiles of this size and weight, resulted in poor sales in the United States. Mazda ceased marketing Wankel-powered automobiles in the United States in the mid-1970s. Several American automobile manufacturers have experimented with Wankel-powered prototypes, but no production vehicles have emerged.
The Wankel engine is being used as a marine engine and in engine–electric generator installations, where its overall weight and fuel consumption have proved to be superior to those of a diesel engine or gas turbine generating equivalent power. Other projected applications include lawnmower and chainsaw engines. This wide range of applications is made possible by the fact that almost any size of Wankel engine is feasible.
An engine conceptually equivalent to the Wankel was developed jointly by Renault, Inc., and the American Motors Corp. It is sometimes called the Renault-Rambler engine. In this case, however, the rotor consists of a four-lobe arrangement, operating in a five-lobe chamber (Fig. 3). When a lobe moves into a cavity, which is analogous to the upward motion of the piston in the cylinder, the gas volume decreases, resulting in a compression process. The operation of this engine is detailed in Fig. 3. The fact that each cavity has two valves (intake and exhaust) represents a significant drawback. However, sealing between chambers may be simpler than in the Wankel; since each cavity acts as a combustion chamber, heat is evenly distributed around the housing, resulting in little thermal distortion.
Renault-Rambler engine.
Fig. 3 Renault-Rambler engine.
Add to 'My Saved Images'
Simple multirotor engine.
Fig. 4 Simple multirotor engine.
Add to 'My Saved Images'
It can be concluded that engines of the eccentric-rotor type are an integral part of the internal combustion engine scene. Their inherent simplicity, coupled with their advanced state of development, make them attractive alternatives to the piston engine in a number of applications.
Multirotor engines
These engines operate on some form of simple rotary motion. A typical design, shown in Fig. 4, operates as follows. A fuel-air mixture enters the combustion chamber through some type of valve. No compression takes place; rather, a spark plug ignites the mixture which burns in the combustion chamber, with a consequent increase in temperature and pressure. The hot gas expands by pushing against the two trochoidal rotors. The eccentric force on the left-hand rotor forces the rotors to rotate in the direction shown. Eventually, the combustion gases find their way out the exhaust.
The problems associated with all engines of this type are principally twofold: The absence of a compression phase leads to low engine efficiency, and sealing between the rotors is an enormously difficult problem. One theoretical estimate of the amount of work produced per unit of heat energy put into the engine (by the combustion process), called the thermal efficiency, is only 4%.
The Unsin engine (Fig. 5) replaces the trochoidal rotors with two circular rotors, one of which has a single gear tooth upon which the gas pressure acts. The second rotor has a slot which accepts the gear tooth. The two rotors are in constant frictional contact, and in a small prototype engine sealing apparently was adequate. The recommendation of its inventor was that some compression of the intake charge be provided externally for larger engines.
The Walley and Scheffel engines employ the principle of the engine in Fig. 4, except that in the former, four approximately elliptical rotors are used, while in the latter, nine are used. In both cases the rotors turn in the same clockwise sense, which leads to excessively high rubbing velocities. (The rotors are in contact to prevent leakage.) The Walter engine uses two different-sized elliptical rotors.
Unsin engine, with two circular rotors.
Fig. 5 Unsin engine, with two circular rotors.
Add to 'My Saved Images'
Revolving-block engines
These engines combine reciprocating piston motion with rotational motion of the entire engine block. One engine of this type is the Mercer (Fig. 6). In this case two opposing pistons operate in a single cylinder. Attached to each piston are two rollers which run on a track that consists of two circular arcs. When the pistons are closest together, the intake ports to the chambers behind the pistons are uncovered, admitting a fresh charge (Fig. 6a). At this moment a charge contained between the pistons has achieved maximum compression, and the spark plug fires. The pistons separate as combustion takes place between them, which results in a compression of the gases behind the pistons (Fig. 6b). However, the pistons moving apart force the rollers to move outward as well. This latter motion can only occur if the rollers run on their circular track, which consequently forces the entire engine block to rotate. When the pistons are farthest apart, the exhaust ports are uncovered and the combustion gases purged (Fig. 6c). At this same time the compressed fresh charge behind the pistons is transferrred to the region between the pistons to prepare for its recompression and combustion, which must occur because of the continuing rotation of the block.
Cycle of the Mercer engine. (a) Intake of fresh charge. (b) Compression of charge, following firing...
Fig. 6 Cycle of the Mercer engine. (a) Intake of fresh charge. (b) Compression of charge, following firing of spark plug. (c) Exhaust of combustion gases and transfer to compressed fresh charge.
Add to 'My Saved Images'
No doubt some of the fresh charge is lost to the exhaust during the transfer process. Stresses on the roller assembly and cylinder walls are likely to be quite high, which poses some design problems. Cooling is a further problem, since cooling of the pistons is difficult to achieve in this arrangement.
One the other hand, the reciprocating piston motion is converted directly to rotary motion, in contrast with the connecting rod–crank arrangement in the conventional piston engine. Also, no flywheel should be necessary since the entire rotating block acts to sustain the rotary inertia. Vibration will also be minimal.
Cycle of the Rajakaruna engine, showing distortion of the four-sided chamber as the surrounding housing...
Fig. 7 Cycle of the Rajakaruna engine, showing distortion of the four-sided chamber as the surrounding housing rotates.
Add to 'My Saved Images'
Walker engine, with elliptical rotor and two C-shaped rocking heads.
Fig. 8 Walker engine, with elliptical rotor and two C-shaped rocking heads.
Add to 'My Saved Images'
Cycle of one pocket of combustion gases in the Heydrich vane-type rotary engine.
Fig. 9 Cycle of one pocket of combustion gases in the Heydrich vane-type rotary engine.
Add to 'My Saved Images'
Leclerc-Edmon-Benstead engine.
Fig. 10 Leclerc-Edmon-Benstead engine.
Add to 'My Saved Images'
The Selwood engine is similar in operation, except that two curved pistons 180° opposed run in toroidal tracks. This design recalls the Tschudi cat-and-mouse engine, except that the pistons only travel through 30° of toroidal track. This motion forces the entire block to rotate. The Leath engine has a square rotor with four pistons, each 90° apart, with a roller connected to each. As in the Mercer engine, the reciprocating motion of the pistons forces the rollers to run around a trochoidal track which causes the entire block to rotate. The Porshe engine uses a four-cylinder cruciform block. Again, rollers are attached to each of the four pistons. In this arrangement power is achieved on the inward strokes of the piston. Finally, the Rajakaruna engine (Fig. 7) uses a combustion chamber whose sides are pin-jointed together at their ends. Volume changes result from distortion of the four-sided chamber as the surrounding housing, which contains a trochoidal track, rotates. The huge pins are forced against the track. As usual, cooling and lubrication problems will be encountered with this engine, as will excessive wear of the hinge pins and track.
The Ma-Ho engine, invented by G. Hofmann, uses four cylinders welded concentrically around a central shft. As the pistons oscillate in the cylinders as a result of the intake-compression-power-exhaust processes undergone by the fuel-air mixture, the pistons rotate a barrel cam to which they are connected by cam followers. Hence, the entire block, including the central shaft, is forced to rotate.
Engines of other types
Although the vast majority of rotary engines fall into one of the categories discussed above, several ingenious designs which do not are worthy of mention.
The Walker engine (Fig. 8) involves an elliptical rotor which rotates inside a casing containing two C-shaped rocking heads. The fuel-air mixture is drawn into combustion chambers on each side of the rotor; mixture cut-off occurs when the rotor is in the vertical position. As the rotor turns, the mixture undergoes compression, and combustion is initiated by spark plugs. Rotor momentum coupled with the expansion of the combustion gases forces the rotor to continue turning. Compensation for seal wear is made by adjusting the rocking heads closer to the rotor.
The Heydrich engine (Fig. 9) is a vane-type rotary engine which utilizes a small hole to “store” a quantity of high-temperature combustion gases from a previous firing. This gas is then used to ignite the subsequent fuel-air charge. The first charge is ignited by a glow plug. Floating seals make contact with the chamber wall.
The Leclerc-Edmon-Benstead engine (Fig. 10) has three combustion chambers defined by stationary vanes, a cylindrical stator, and end flanges. An output shaft passing through the chamber is geared to a circular, eccentrically mounted piston. As the chambers are fired sequentially, the movement of the piston forces the shaft to rotate. Slots in the flange control porting of the intake and exhaust gases. See also: Combustion chamber; Diesel cycle; Diesel engine; Gas turbine; Internal combustion engine; Otto cycle
Wallace Chinitz
Bibliography
R. F. Ansdale, Rotary combustion engines, Auto. Eng., vol. 53, no. 13, 1963, and vol. 54, nos. 1 and 2, 1965
W. Chinitz, Rotary engines, Sci. Amer., vol. 220, no. 2, 1969
H. E. Dark, The Wankel Rotary Engine, 1974
W. Froede, The Rotary Engine and the NSU Spider, Soc. Automot. Eng. Pap. 650722, October, 1965
K. Matsumoto et al., The Effects of Combustion Chamber Design and Compression Ratio on Emissions, Fuel Economy and Octane Number Requirement, SAE Pap. 770193, 1977
R. H. Thring, Gasoline engines and their future, Mech. Eng., vol. 15, no. 10, 1983
R. Wakefield, Revolutionary engines, Road Track, vol. 18, no. 3, 1966
F. Wankel, in R. F. Ansdale (ed.), Rotary Piston Machines: Classification of Design Principles for Engines, Pumps and Compressors, 1965
Wednesday, December 16, 2009
keramik
Keramik memiliki karakteristik yang memungkinkannya digunakan untuk berbagai aplikasi termasuk :
- kapasitas panas yang baik dan konduktivitas panas yang rendah.
- Tahan korosi
- Sifat listriknya dapat insulator, semikonduktor, konduktor bahkan superkonduktor
- Sifatnya dapat magnetik dan non-magnetik
- Keras dan kuat, namun rapuh.
Dua jenis ikatan dapat terjadi dalam keramik, yakni ikatan ionik dan kovalen. Sifat keseluruhan material bergantung pada ikatan yang dominan. Klasifikasi
Bahan keramik dapat dibedakan menjadi dua kelas : kristalin dan amorf (non kristalin). Dalam material kristalin terdapat keteraturan jarak dekat maupun jarak jauh, sedang dalam material amorf mungkin keteraturan jarak pendeknya ada, namun pada jarak jauh keteraturannya tidak ada. Beberapa keramik dapat berada dalam kedua bentuk tersebut, misalnya SiO2, (lihat gambar, a struktur yang kristalin, b amorf).
Jenis ikatan yang dominan (ionik atau kovalen) dan struktur internal (kristalin atau amorf) mempengaruhi sifat-sifat bahan keramik. Sifat termal
Sifat termal penting bahan keramik adalah kapasitas panas, koefisien ekspansi termal, dan konduktivitas termal. Kapasitas panas bahan adalah kemampuan bahan untuk mengabsorbsi panas dari lingkungan. Panas yang diserap disimpan oleh padatan antara lain dalam bentuk vibrasi (getaran) atom/ion penyusun padatan tersebut.
Keramik biasanya memiliki ikatan yang kuat dan atom-atom yang ringan. Jadi getaran-getaran atom-atomnya akan berfrekuensi tinggi dan karena ikatannya kuat maka getaran yang besar tidak akan menimbulkan gangguan yang terlalu banyak pada kisi kristalnya.
Hantaran panas dalam padatan melibatkan transfer energi antar atom-atom yang bervibrasi. Vibrasi atom akan mempengaruhi gerakan atom-atom lain di tetangganya dan hasilnya adalah gelombang yang bergerak dengan kecepatan cahaya yakni fonon. Fonon bergerak dalam bahan sampai terhambur baik oleh interaksi fonon-fonon maupun cacat kristal. Keramik amorf yang mengandung banyak cacat kristal menyebabkan fonon selalu terhambur sehingga keramik merupakan konduktor panas yang buruk. Mekanisme hantaran panas oleh elektron, yang dominan pada logam, tidak dominan di keramik karena elektron di keramik sebagian besar terlokalisasi.
Contoh paling baik penggunaan keramik untuk insulasi panas adalah pada pesawat ruang angkasa. Hampir semua permukaan pesawat tersebut dibungkus keramik yang terbuat dari serat silika amorf. Titik leleh aluminium adalah 660 oC. Ubin menjaga suhu tabung pesawat yang terbuat dari Al pada atau dibawah 175 oC, walaupun eksterior pesawat mencapau 1400 oC. Sifat Optik
Bila cahaya mengenai suatu obyek cahaya dapat ditransmisikan, diabsorbsi, atau dipantulkan. Bahan bervariasi dalam kemampuan untuk mentransmisikan cahaya, dan biasanya dideskripsikan sebagai transparan, translusen, atau opaque. Material yang transparan, seperti gelas, mentransmisikan cahaya dengan difus, seperti gelas terfrosted, disebut bahan translusen. Batuan yang opaque tidak mentransmisikan cahaya.
Dua mekanisme penting interaksi cahaya dengan partikel dalam padatan adalah polarisasi elektronik dan transisi elektron antar tingkat energi. Polarisasi adalah distorsi awan elektron atom oleh medan listrik dari cahaya. Sebagai akibat polarisasi, sebagian energi dikonversikan menjadi deformasi elastik (fonon), dan selanjutnya panas.
Seperti dalam atom elektron-elektron dalam bahan berada dalam tingkat-tingkat energi tertentu. Absorbsi energi menghasilkan perpindahan elektron dari tingkat dasar ke tingkat tereksitasi. Ketika elektron kembali ke keadaan dasar disertai dengan pemancaran radiasi elektromagnetik.
Dalam padatan elektron yang energinya tertinggi ada dalam orbital-orbital dalam pita valensi dan orbital-orbital yang tidak terisi biasanya dalam pita konduksi. Gap antara pita valensi dan pita konduksi disebut gap energi.
Range energi cahaya tampak 1,8 sampai 3,1 eV. Bahan dengan gap energi di daerah ini akan mengabsorbsi energi yang berhubungan. Bahan itu akan tampak transparan dan berwarna. Contohnya, gap energi CdS sekitar 2,4 eV dan mengabsorbsi komponen cahaya biru dan violet dari sinar tampak. Tampak bahan tersebut berwarna kuning-oranye.
Bahan dengan gap energi kurang dari 1,8 eV akan opaque, sebab semua cahaya tampak akan diabsorbsi. Material dengan gap energi lebih besar 3,1 eV tidak akan menyerap range sinar tampak dan akan tampak transparan dan tak berwarna. Cahaya yang diemisikan dari transisi elektron dalam padatan disebut luminesensi. Bila terjadi dalam selang waktu yang pendek disebut flouresensi, bila didalam selang waktu yang lebih panjang disebut fosforisensi.
Cahaya yang ditransmisikan dari satu medium ke medium lain, misalnya dari gelas ke air akan mengalami pembiasan. Pembelokan cahaya ini adalah akibat perubahan kecepatan rambat yang asal mulanya dari polarisasi elektronik. Karena polarisasi meningkat dengan naiknya ukuran atom. Gelas yang mengandung ion-ion berat (seperti kristal timbal) memiliki indeks bias yang lebih besar dari gelas yang mengandung atom-atom ringan (seperti gelas soda).
Hamburan cahaya internal dalam bahan yang sebenarnya transparan mungkin dapat mengakibatkan bahan menjadi translusen atau opaque. Hamburan semacam ini terjadi antara lain di batas butiran, batas fasa, dan pori-pori.
Banyak aplikasi memanfaatkan sifat optik bahan keramik ini. Transparansi gelas membuatnya bermanfaat untuk jendela, lensa, filter, alat masak, alat lab, dan objek-objek seni. Pengubahan antara cahaya dan listrik adalah dasar penggunaan bahan semikonduktor seperti GaAs dalam laser dan meluasnya penggunaan LED dalam alat-alat elektronik. Keramik fluoresensi dan fosforisensi digunakan dalam lampu-lampu listrik dan layar-layar tv. Akhirnya serat optik mentransmisikan percakapan telepon dan data komputer yang didasarkan atas refleksi internal total sinyal cahaya.
sifat mekanik
Keramik biasanya material yang kuat, dan keras dan juga tahan korosi. Sifat-sifat ini bersama dengan kerapatan yang rendah dan juga titik lelehnya yang tinggi, membuat keramik merupakan material struktural yang menarik.
Aplikasi struktural keramik maju termasuk komponen untuk mesin mobil dan struktur pesawat. Misalnya, TiC mempunyai kekerasan 4 kali kekerasan baja. Jadi, kawat baja dalam struktur pesawat dapat diganti dengan kawat TiC yang mampu menahan beban yang sama hanya dengan diameter separuhnya dan 31 persen berat. Semen dan tanah liat adalah contoh yang lain, keduanya dapat dibentuk ketika basah namun ketika kering akan menghasilkan objek yang lebih keras dan lebih kuat. Material yang sangat kuat seperti alumina (Al2O3) dan silikon karbida (SiC) digunakan sebagai abrasif untuk grinding dan polishing.
Keterbatasan utama keramik adalah kerapuhannya, yakni kecenderungan untuk patah tiba-tiba dengan deformasi plastik yang sedikit. Ini merupakan masalah khusus bila bahan ini digunakan untuk aplikasi struktural. Dalam logam, elektron-elektron yang terdelokalisasi memungkinkan atom-atomnya berubah-ubah tetangganya tanpa semua ikatan dalam strukturnya putus. Hal inilah yang memungkinkan logam terdeformasi di bawah pengaruh tekanan. Tapi, dalam keramik, karena kombinasi ikatan ion dan kovalen, partikel-partikelnya tidak mudah bergeser. Keramiknya dengan mudah putus bila gaya yang terlalu besar diterapkan.
Faktur rapuh terjadi bila pembentukan dan propagasi keretakan yang cepat. Dalam padatan kristalin, retakan tumbuh melalui butiran (trans granular) dan sepanjang bidang cleavage (keretakan) dalam kristalnya. Permukaan tempat putus yang dihasilkan mungkin memiliki tekstur yang penuh butiran atau kasar. Material yang amorf tidak memiliki butiran dan bidang kristal yang teratur, sehingga permukaan putus kemungkinan besar mulus penampakannya.
Kekuatan tekan penting untuk keramik yang digunakan untuk struktur seperti bangunan. Kekuatan tekan keramik biasanya lebih besar dari kekuatan tariknya. Untuk memperbaiki sifat ini biasanya keramik di-pretekan dalam keadaan tertekan. Sifat Hantaran Listrik.
Sifat listrik bahan keramik sangat bervariasi. Keramik dikenal sangat baik sebagai isolator. Beberapa isolator keramik (seperti BaTiO3) dapat dipolarisasi dan digunakan sebagai kapasitor.
Keramik lain menghantarkan elektron bila energi ambangnya dicapai, dan oleh karena itu disebut semikonduktor. Tahun 1986, keramik jenis baru, yakni superkonduktor temperatur kritis tinggi ditemukan. Bahan jenis ini di bawah suhu kritisnya memiliki hambatan = 0. Akhirnya, keramik yang disebut sebagai piezoelektrik dapat menghasilkan respons listrik akibat tekanan mekanik atau sebaliknya.
Sering pula digunakan bahan yang disebut dielektrik. Bahan ini adalah isolator yang dapat dipolarisasi pada tingkat molekular. Material semacam ini digunakan untuk menyimpan muatan listrik.
Kekuatan dielektrik bahan adalah kemampuan bahan tersebut untuk menyimpan elektron pada tegangan tinggi. Bila kapasitor dalam keadaan bermuatan penuh, hampir tidak ada arus yang lewat. Namun dengan tegangan tinggi dapat mengeksitasi elektron dari pita valensi ke pita konduksi. Bila hal ini terjadi arus mengalir dalam kapasitor, dan mungkin disertai dengan kerusakan material karena meleleh, terbakar atau menguap. Medan listrik yang diperlukan untuk menghasilkan kerusakan itu disebut kekuatan dielektrik. Beberapa keramik mempunyai kekuatan dielektrik yang sangat besar.Porselain misalnya sampai 160 kV/cm. Sebagian besar hantaran listrik dalam padatan dilakukan oleh elektron. Di logam, elektron penghantar dihamburkan oleh vibrasi termal meningkat dengan kenaikan suhu, maka hambatan logam meningkat pula dengan kenaikan suhu.
Sebaliknya, elektron valensi dalam keramik tidak berada di pita konduksi, sehingga sebagian besar keramik adalah isolator. Namun, konduktivitas keramik dapat ditingkatkan dengan memberikan ketakmurnian. Energi termal juga akan mempromosikan elektron ke pita konduksi, sehingga dalam keramik, konduktivitas meningkat (hambatan menurun) dengan kenaikan suhu.
Beberapa keramik memiliki sifat piezoelektrik, atau kelistrikan tekan. Sifat ini merupakan bagian bahan “canggih” yang sering digunakan sebagai sensor. Dalam bahan piezoelektrik, penerapan gaya atau tekanan dipermukaannya akan menginduksi polarisasi dan akan terjadi medan listrik, jadi bahan tersebut mengubah tekanan mekanis menjadi tegangan listrik.
Bahan piezoelektrik digunakan untuk tranduser, yang ditemui pada mikrofon, dan sebagainya.
Dalam bahan keramik, muatan listrik dapat juga dihantarkan oleh ion-ion. Sifat ini dapat diubah-ubah dengan merubah komposisi, dan merupakan dasar banyak aplikasi komersial, dari sensor zat kimia sampai generator daya listrik skala besar. Salah satu teknologi yang paling prominen adalah sel bahan bakar. Kemampuan penghantaran ion didasarkan kemampuan keramik tertentu untuk memungkinkan anion oksigen bergerak, sementara pada waktu yang sama tetap berupa isolator. Zirkonia, ZrO2, yang distabilkan dengan kalsia (CaO), adalah contoh padatan ionik.
Monday, January 5, 2009
rotary engine
Disini gw mau sedikit bahas tentang rotary engine ya...
Mungkin diantara kita telah mengenal engine 4 stroke ataupun 2 stroke…!!! Malah di kalangan speed freak.. banyak yang mencintai two stroke…!!! Sekali betot.. wuzz..wuzz… bablazz angine..!!! RX-King, NSR, Ninja.. masih memiliki penggemar yang setia…!!! Jika dilihat dari sisi power… selain 2 stroke.. masih ada lagi type engine yang patut diperhitungkan… yaitu rotary engine…!!! Rotary engine ini ditemukan oleh seorang German Engineer, Felix Wankel…!!! Yang menarik si Wankel ini.. nggak pernah belajar / sekolah university manapun…!!! Dia hanya memperoleh Doktor Honoris causa dibidang engineering…!!! Pada perang dunia II, dia ikut mengembangkan rotary valves buat pesawat ataupun kapal selam Jerman..!!! Sistem kerja rotary engine masih sama… yaitu ada siklus intake, compress, pembakaran dan buang…. namun dikerjakan berdasarkan prinsip rotor yang berbentuk segitiga…!!! Nggak pake piston…!!!
Keuntungan utama dari rotary engine adalah power yang dihasilkan sangat besar dengan cc yang sama..!!! Hal ini bisa terjadi … karena mirip dengan 2 stroke .. yang nggak pake valves.. lebih mempercepat langkah… !!! Disamping itu… sistem rotary engine ini.. nggak menggunakan connecting rods…!!! Dan ini membuat rotary engine termasuk powerful…!!!
Teruz kerugiaannya apa…??? Yah sebagaimana 2 stroke… hasil pembakarannya yaitu carbon monoksidanya cukup tinggi… dimana disebabkan kurang sempurnanya pembakaran. Namun ini bisa dengan mudah disiasati dengan catalytic converter. Pada awal penciptaan rotary engine, masih ditemukan loss tenaga yang terjadi. Namun dengan perkembangan technology yang ada… loss ini makin bisa diminimalisir…!!!
"Chop side" rotary engine.
Dari depan.
Saluran / got pendinginan (coolant passageway):
Yg dimaksud seal adalah spt pd gbr dibawah ini :
yup.. spt ini cara kerjanya!!
Tuesday, December 2, 2008
machine
Andres Garcia
I’m afraid I was seriously disappointed by your response to the letter, “Ethanol’s the Answer?” (Oct. 9). You said that “...researchers from Cornell University and UC Berkeley...” conclude that “....making ethanol from corn consumes more energy than the ethanol produced actually contains.....” But the facts are that the vast majority of studies on the energy balance of turning corn into ethanol show a positive energy balance of around 33%, and come from organizations at least the equal in prestige of Cornell and Berkeley. The two studies you quote are in a distinct minority, and, if I remember correctly from when I researched this issue in depth, the author from Berkeley was at one time a grad student of the author at Cornell. And even if the energy balance “is” negative, the vast majority of the energy behind ethanol is used making fertilizer, and that energy comes mostly from coal, not from imported oil. Next time, try using ALL the data, and not just the subset that happens to agree with your prejudices.
My own personal energy preference is to build lots of nukes, (both burner and breeder types), and resume nuke-fuel reprocessing, but I’m not going to fault ethanol using false premises.
Duane K. Wolcott
It should be said that David Pimentel, the Cornell researcher who did the original analysis, published his work in a peer-reviewed journal. Pimentel also chaired a Dept. of Energy panel that investigated ethanol production. The primary criticism of his work seems to come from a consultant hired by the National Corn Growers Assoc. As far as I can tell, this consultant’s criticism has not been peer reviewed. And NCGA obviously had a vested interest in the results.
Roots of the shortage
It is easy to see why there is a “shortage” of engineers: It is an unstable way to earn a living. Before the Great Depression, professional engineers made more money per year than doctors. After World War II, however, returning veterans flooded engineering schools, which kept expanding through the 1980s to handle the flood. The relative economics eroded. So, most engineers counsel their kith and kin to go into other fields. Then manufacturers cry about having to loosen import quotas to allow more foreign engineers to come in.
George H. Morgan
MW? What’s that?
Although I’m not a mechanical designer, I read your magazine to learn about the field and keep up with the latest innovations. But your recent article on the automation of solar-cell factories (“Solar production shifts into high gear,” Sept. 11) confused me a bit. You used the term MW to express the size of a photovoltaic plants. Do you mean megawatts? If that is a production measure, it seems like it should be MW per unit time, like MW per year. Or did you mean million wafers? That would still need a time period to be completely clear.
Bruce DeRienze
MW is the abbreviation for megawatts. In PV industry parlance, a 100- MW factory has the capability to put out 100 MW-worth of panels in a year.— Leland Teschler
Europeans and their diesels
I found your editorial on mileage quite interesting. (“MPG figures aren’t what they seem,” Sept. 11). The truck and heavy-equipment diesel folks have been dealing with NOx for several years, ever since emission regulations came into play. Basically, diesel engines emit NOx when combustion temperatures are high and emit particulates when those temperatures are low. So there’s a continuing interest in striking a balance between the two because both are regulated as part of air quality.
The Europeans are not concerned as much about NOx as they are about particulates. In recent years, there was strong political pressure to reduce particulates, so devices were quickly fitted to diesel-powered passenger cars to get this done. This let European car engineers continue their focus on increasing thermal efficiency and mileage.
For trucks and heavy equipment, Europeans are quite fond of using urea. It is injected into the cylinders after combustion where it transforms NOx into benign chemicals. There is a good infrastructure supporting urea in Europe, a network of suppliers and distributors that doesn’t exist in the U.S. Recently in the U.S., however, there has been a move toward using urea to meet the latest round of emission regulations on diesels. However, those moves come with several caveats, including assurances that diesel engines will work without urea and that there will be enough urea outlets to supply the fleets of trucks and heavy equipment.
John Fletcher
Ps and Qs: Another of life’s mysteries
In recent issue of MACHINE DESIGN (Backtalk, Oct. 9) it stated that “Mind your P’s and Q’s” comes from unruly English pub customers not minding their pints and quarts. Actually, back in the days of setting type for printing, manual typesetters were issued that warning because of the visual similarity between the lower case p’s and q’s. Looking at the backward type to verify the letters “p” and “q” could understandably be confusing.
Stanley J. Zielinski
This familiar phrase has many possible origins. If the reader’s version is to be considered — and it is a popular one — you’d have to explain why we aren’t minding our b’s and d’s, another pair of mirror-image letters. An alternative theory is that the p stands for pleases and the q for thank-yous, turning the phrase into an admonition to watch your manners, a meaning it still holds. One of my favorite explanations is that it stems from the British Navy and was a reminder to sailors not to get their pea-jackets (p’s) dirty with their tarred queues or pigtails( q’s). And there’s at least one other explanation, that it originally meant learning the alphabet. A poem written by Charles Churchill around 1763 says: “On all occasions next the chair / He stands for service of the Mayor, / And to instruct him how to use / His A’s and B’s, and P’s and Q’s.” — Editor
Ethanol — a corny idea?
Mileage and ethanol are still fresh on the minds of our readers, despite the fact gas prices have come down considerably, at least in the Midwest. Meanwhile, another engineer gives us the lowdown on urea, which could be coming to the U.S. soon.